光電感測器
Banner 提供世界上最完整的光電感測器系列,為財富 500 強企業與製造商供貨。
When the light beam emitted by a photoelectric sensor is interrupted or reflected by the object, the change in light patterns is measured by a receiver and the target object or surface is recognized. Photoelectric sensors are very common in industrial manufacturing fields such as material handling, packaging, food and beverage, medical, and many others.
Depending on the style selected, they can be used with or without a reflector, be self-contained, long-range, heavy-duty, or compact. There are many different housing and mounting options to offer a correct fit that meets the demands of each application. They perform a wide variety of tasks and some of them can even be used in harsh environments.
光電感測器,也稱為電眼,可發射一光束,用於偵測物品和設備的存在或不存在,或者表面條件的變化。當發射的光被物體中斷或反射時,接收器測量光線的變化,從而識別目標物體或表面。光電感測器在工業製造領域非常常見,例如材料處理、包裝、食品和飲料、醫療等。
根據所選的樣式,它們可以帶或不帶反射板,可以是一體式、長距離、重型和輕巧型。有許多不同的外殼和安裝選項,以提供可滿足各應用需求的正確安裝。它們執行各種任務工作,其中一些甚至可以在嚴苛的環境中使用。
Series Image | Series Name | Opposed Range (m) | Non-polarized Retroreflective Range (m) | Polarized Retroreflective Range (m) | Laser Polarized Retroreflective Range (m) | Diffuse Range (mm) | Fixed-Field Range (mm) | Adjustable-Field Range (mm) | Type of Emitter | Housing Material | IP Rating | Response Time (μs) | Operating Temperature | IO-Link | Clear Object Detection |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Series Image | Series Name QS18 | Opposed Range (m) 20 | Non-polarized Retroreflective Range (m) 6.5 | Polarized Retroreflective Range (m) 3.5 | Laser Polarized Retroreflective Range (m) 10 | Diffuse Range (mm) 600 | Fixed-Field Range (mm) 200 | Adjustable-Field Range (mm) 350 | Type of Emitter LED and Laser | Housing Material Plastic | IP Rating IP67 | Response Time (μs) 600–800 | Operating Temperature -20 to +70 °C | IO-Link ✅ YES | Clear Object Detection ✅ YES |
Series Image | Series Name Q20 | Opposed Range (m) 20 | Non-polarized Retroreflective Range (m) 6 | Polarized Retroreflective Range (m) 4 | Laser Polarized Retroreflective Range (m) — | Diffuse Range (mm) 1500 | Fixed-Field Range (mm) 150 | Adjustable-Field Range (mm) 400 | Type of Emitter LED | Housing Material Plastic | IP Rating IP67 | Response Time (μs) 850–1000 | Operating Temperature -20 to +60 °C | IO-Link ✅ YES | Clear Object Detection 🚫 NO |
Series Image | Series Name QS30 | Opposed Range (m) 60 | Non-polarized Retroreflective Range (m) 12 | Polarized Retroreflective Range (m) 8 | Laser Polarized Retroreflective Range (m) 18 | Diffuse Range (mm) 1400 | Fixed-Field Range (mm) 600 | Adjustable-Field Range (mm) 600 | Type of Emitter LED and Laser | Housing Material Plastic | IP Rating IP67 | Response Time (μs) 2000–5000 | Operating Temperature -20 to +70 °C | IO-Link 🚫 NO | Clear Object Detection ✅ YES |
Series Image | Series Name T18-2 | Opposed Range (m) 25 | Non-polarized Retroreflective Range (m) — | Polarized Retroreflective Range (m) 6 | Laser Polarized Retroreflective Range (m) — | Diffuse Range (mm) 750 | Fixed-Field Range (mm) 200 | Adjustable-Field Range (mm) — | Type of Emitter LED | Housing Material Plastic | IP Rating IP67, IP68, IP69K | Response Time (μs) 1500–2000 | Operating Temperature -40 to +70 °C | IO-Link 🚫 NO | Clear Object Detection 🚫 NO |
Series Image | Series Name Q3X | Opposed Range (m) — | Non-polarized Retroreflective Range (m) — | Polarized Retroreflective Range (m) — | Laser Polarized Retroreflective Range (m) — | Diffuse Range (mm) 300 | Fixed-Field Range (mm) 200 | Adjustable-Field Range (mm) — | Type of Emitter Laser | Housing Material Metal | IP Rating IP67, IP68, IP69K | Response Time (μs) 250 | Operating Temperature -10 to +50 °C | IO-Link 🚫 NO | Clear Object Detection 🚫 NO |
Series Image | Series Name Q2X | Opposed Range (m) 3 | Non-polarized Retroreflective Range (m) — | Polarized Retroreflective Range (m) 3.3 | Laser Polarized Retroreflective Range (m) — | Diffuse Range (mm) — | Fixed-Field Range (mm) 50 | Adjustable-Field Range (mm) 3000 | Type of Emitter LED and Laser | Housing Material Plastic | IP Rating IP67 | Response Time (μs) 600–100,000 | Operating Temperature -25 to +50 °C | IO-Link ✅ YES | Clear Object Detection ✅ YES |
Photoelectric sensors can detect the presence or absence of objects or changes in surface conditions of a target. They emit a beam of light that is detected by a receiving element. When an object interrupts or reflects the emitted light, an output switches, sending an electronic signal. Most target materials can be detected including those that are shiny, dark, clear, or multicolored. Photoelectric sensors are very common in industrial manufacturing fields such as material handling, packaging, food and beverage, medical, and many others.
Photoelectric sensors can be long range, heavy duty, and compact, and they are available in various detection ranges. Some require separate emitters and receivers, others include both an emitter and a receiver in one housing (with or without a reflector), and some sensors are capable of differentiating targets from backgrounds. These various detection methods are known as sensing modes. There are many different housing and mounting options to offer a correct fit that meets the demands of each application. They perform a wide variety of tasks, can have a very fast response, and some can even be used in harsh environments.
Different applications require different approaches to sensing. To satisfy these diverse application needs, Banner offers multiple sensing modes including opposed, retroreflective, diffuse, and background suppression. The range at which detection occurs, the physical composition of the object being detected, and the environment in which the sensors operate can all affect the sensing mode choice.
In opposed-mode sensing, the sensor's emitter and receiver are housed in two separate units. The emitter is placed opposite the receiver, so that the light beam goes directly from the emitter to the receiver. An object is detected when it "breaks" or interrupts the working part of the light beam, known as the effective beam. Depending on the application, opposed mode sensing provides the highest reliability whenever it can be implemented. This is because light passes directly from the emitter to the receiver. Then, when an object breaks the beam, the output will switch.
- Opposed-mode sensing offers the highest level of excess gain (sensing energy)
- Long sensing range
- Most robust for harsh environments
- Precise position sensing
- Small-part detection using lens apertures
- Impervious to surface reflectivity (the color or finish of the object)
A retroreflective sensor contains both the emitter and receiver elements in the same housing. It uses a reflector to bounce the emitted light back to the receiver. Similar to an opposed-mode sensor, it senses objects when they interrupt or "break" the effective beam. Because retroreflective sensing is a beam-break mode, it is generally not dependent upon the reflectivity of the object to be detected.
However, it can be tricked by shiny objects. For those targets, a polarized retroreflective sensor should be used to prevent proxing. Proxing is when an object with a shiny surface returns enough light to the sensor to mimic the photoelectric beam coming back from the reflector and causes the object to not be detected. In a polarized retroreflective sensor, the emitter sends light waves through a filter that aligns them on the same plane. These light waves bounce off the reflector, and return to a vertically polarized filter on the receiver. When this polarized light reaches a shiny target, the light is reflected back to the sensor on the same plane as it was emitted and is blocked by the filter, signaling a broken beam. When the polarized light hits the reflector, however, it is scattered into unpolarized light with light waves on both the horizontal and vertical planes. Some of this light will pass through the receiver’s filter and the sensor will detect the reflector and know the beam is unbroken.
A retroreflective-mode sensor offers a convenient alternative to opposed mode when space is limited, or if electrical connections are only possible one side of the installation. Retroreflective-mode sensors offer relatively long ranges.
- Second-highest excess gain mode
- Polarized model available to prevent the beam from proxing off shiny objects
- Coaxial optics available for clear objects and precision
Diffuse-mode sensors contain the emitter and receiver in the same housing but do not use a reflector. Instead, they detect an object when emitted light is reflected off a target and back to the sensor. With a diffuse-mode sensor, the object is detected when it "makes" the beam; that is, the object reflects the transmitted light energy back to the sensor. They are significantly affected by the reflectivity of the target objects, which can drastically shorten their range. These sensors should not be used in applications with very small parts that need to be detected, in parts-counting applications, or where a reflective background is close to the object to be sensed. Diffuse-mode sensors are very convenient and are often used when opposed or retroreflective-mode sensors aren't practical.
- Low installation effort
- Does not require a reflector
The high excess gain of the adjustable-field Q2X allows it to reliably detect dark wafers. The tight minimum object separation can trigger the machine to move the next wafer into position as soon as the previous one is out of the way. And the small form factor easily fits into the machine without getting in the way.
- Simplify installation with fewer components and less wiring; no retro target or receiver required
- Ignore objects in the background with an adjustable cutoff distance between 18 mm and 150 mm
- Detect dark and challenging targets using powerful emitters with high excess gain
- Detect precise features with the small, bright-red LED or Class 1 laser emitter
- Avoid crosstalk when mounting multiple sensors in close proximity due to the advanced crosstalk immunity algorithm
Background-suppression (BGS) sensors are a diffuse-type sensor with a defined limit to their sensing range, ignoring any objects that lie beyond that range. There are two types of background-suppression sensors: fixed-field and adjustable-field. Both types use triangulation to determine the cutoff distance which allows the sensor to ignore anything beyond that point. The available excess gain inside the fixed sensing field is usually high, allowing sensing of less-reflective surfaces. A background-suppression sensor can often detect a dark target on a white background, as long as the background is past the sensor’s cutoff.
- Detects objects out to a set sensing distance
- Ignores background objects
- Very low color sensitivity
Excess gain is a measurement of the amount of light energy that the receiver element detects. A sensor needs an excess gain of one to cause the sensor's output to switch "on" or "off." However, contaminants in the sensing environment such as dirt, dust, smoke, and moisture can cause signal attenuation, so more excess gain will be required to receive a valid signal. Excess gain may be seen as the extra sensing energy available to overcome that attenuation.
An excess gain chart shows how much light energy is available at a given distance. The dirtier the environment, the more excess gain will be needed to overcome it. The graphs are logarithmic, which allows for a concise overview of data that varies by several orders of magnitude. Each minor tick increases by a factor of 1, and each major tick increases by a factor of 10. For example, starting at the origin and moving up the Y-axis, the graph's ticks represent 1, 2, 3, etc. Once the tick gets to 10, the ticks represent 10, 20, 30, etc. When the tick gets to 100, then the ticks represent 100, 200, 300, and so on.
Photoelectric sensors are available with a variety of sensing beams including visible LEDs, infrared LEDs, long wavelength infrared LEDs, and lasers, each of which has its benefits. Because applications are rarely the same, the choice of beam type and pattern will vary from one to the next. Banner offers an extensive line of photoelectric sensors to solve even the most challenging sensing requirements.
Visible LEDs
Visible LEDs help in the alignment and setup of a sensor, since the visible beam will provide a spot on the target. Red is the most common color for photoelectric sensors, because red diodes are inexpensive to make and the photodetectors in receivers are very sensitive to red light.
Materials will act differently to different wavelengths of light. A certain material may absorb one wavelength of light while reflecting another, or the contrast between two colors is low. In these cases, trying a different color LED, such as blue, can be a simple solution to the problem.
Infrared LEDs
Infrared (IR) LEDs are invisible to the human eye but are very efficient at producing light. This efficiency can help IR sensors see farther than visible LEDs. However, because the beam is invisible, it can make alignment more difficult.
Long-Wavelength Infrared LEDs
Typically, photoelectric sensors cannot see water because it is transparent to light in the visible spectrum. Fortunately, water efficiently absorbs the specific wavelength of 1450 nm, allowing for detection. Certain Banner sensors utilize long-wavelength infrared (LIR) LEDs operating at 1450 nm to detect liquids that contain water, while ignoring (burning through) clear or opaque containers.
Laser
Many Banner sensors use lasers for their emitted beams. Lasers use a small beam spot, delivering higher precision that is ideal for detecting very small objects or features. This beam remains very tight even over great distances, delivering precision detection at longer range.
The beam pattern represents the boundary within which the sensor will respond to a target. In opposed mode, the receiver can be anywhere within this pattern and will detect light from the emitter. In retroreflective mode, the beam pattern is dependent on the reflector being used. A smaller reflector will reflect less light, which results in a shorter range and a more narrow beam pattern. In diffuse mode, the target must be within the beam pattern to be detected. In diffuse mode, the beam pattern is created using a 90% white card, so different-colored targets will affect the beam pattern.
Sensors also have an effective beam, which is the “working” part of the light beam stretching from the emitter to the receiver. An object is detected when it breaks the effective beam. In opposed mode, the effective beam is established between the emitter and receiver. In retroreflective mode, because the emitter and receiver are housed in a single unit, the effective beam is established between the emitter, reflector, and receiver.
Photoelectric Applications
-
Dark Wafer Presence Detection
-
Streamline Labeling Process with a Fixed-Field Sensor
-
Accurate Positioning in Medical & Scientific Laboratories
-
Status Indication on Airport Conveyor
-
Preventing Jams in Airport Baggage Retrieval Systems
-
堆高機LED發光指示燈
-
Jam Detection on a Conveyor with Only AC Power
-
穩定偵側輸送機上的半透明塑膠瓶
-
操作指導解決方案
-
藍色LED感測器偵測琥珀色瓶子[成功案例]
-
高速收縮膜套標[成功案例]
-
紙箱堆疊高度
-
高度量測
-
監控送料機上的塑膠托盤高度
-
IC晶片計數
-
為MS卡計數
-
果汁紙箱偵測
-
裝載站棧板偵測
-
藥瓶裝瓶偵測
-
在托盤封口機中監測透明薄膜
-
馬達偵測
-
穿梭車零件定位
-
黑色O型環偵測
-
偵測漏斗和灌裝站的黑色塑膠託盤
-
瓶蓋檢測
-
狹窄區域中的瓶蓋檢測
-
瓶蓋方向驗證
-
偵測黑色門板上的黑色零部件
-
確認衝壓機上的金屬板
-
在沖洗環境中偵測透明玻璃和塑膠聚酯瓶
-
單行裝瓶機的生產線內聚積
-
Detection of Clear Liquids in Transparent Packaging
-
退出滑槽卡住指示
-
瓶子填料高度偵測
-
Vertical Form Fill Seal Machine Solutions
-
行李搬運
-
Carton Trigger For Date/Lot Code Printing
-
使用背景消除技術對注射器計數
-
Detecting Different Size Packages on a Conveyor
-
水瓶的液位高度驗證
-
分揀自動感測站
-
金屬零組件堆疊高度偵測
-
偵測組裝過程中印刷電路板組件粘合狀態
-
裝配線上近距離防錯
-
使用直反式雷射感測器進行包裝檢測
-
Detecting Tipped-Over Bottles on a High-Speed Bottling Line
-
Counting Reflective Rings
-
深色和低對比度目標物
-
Detecting Reflective Packages on a Conveyor
-
Detecting Transparent Bottles in a Washdown Environment
-
Non-Contact Fill Level Verification
-
使用QS30進行木板翹曲偵測
-
瓶子標籤驗證
-
Counting Food Cartons for Correct Packaging
-
可伸縮式輸送帶
-
避免包裹碰撞
-
進料機裝置中的零件偵測
-
偵測各種顏色的瓶蓋
-
檢測多通道輸送機上的冷藏早餐卷
-
瓶蓋方向的偵測
-
硬碟偵測
-
檢測在包裝線上是否缺少巧克力
-
標籤偵測
-
針對IC晶片包裝的除錯應用
-
包裝式冷凍食品的封口檢測
-
Detecting and Indicating the Presence of a Tipped Bottle
-
Detecting PET Bottles to Regulate Product Flow
-
Hygienic Sensors for Glass Vial Detection in Harsh Chemical Environment
-
Long-Range Feature Detection
-
顏色分揀
-
輸送帶堵塞偵測
-
偵測玻璃面板
-
偵測交流供電輸送帶上的物品
-
列印時的檢查觸發
-
用QS18偵測液體滲漏
-
按照郵件大小排序
-
輸送帶上的物體
-
罐裝汽水流量控制
-
零部件就位驗證
-
送料機軌道上的零部件檢查
-
引擎汽缸上的橡膠墊圈偵測
-
螺絲孔偵測
-
追踪小瓶通過自動化臨床實驗室
-
Counting Transparent Plastic Containers on a Conveyor
-
Clear Glass Jar Detection for Food and Beverage Splash Zone
-
Clear Plastic Food Container Detection in a Sanitary Environment
-
Clear Tray Detection at Hopper Food Storage Units
-
Denester 透明食品托盤生產線壓力控制
-
在紙盒包裝機上包裝冷凍食品
-
洗車業
-
透明和亮面目標物
-
極端環境下自動洗車的車輛定位
-
半透明藥瓶的精確計數
Resources
The latest Photoelectric Sensors Solutions brochure explores the many different types of Banner sensors and how to choose the right one for your application, whether it be object counting, quality control, object presence or absence, or other automation need.